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1.  Introduction
In recent times analysis involving the 
measurement of soil temperature has 
been on the increase. This is due to the 
fact that the knowledge of soil 
temperature is valuable for many 
reasons. Soil temperature, among 
others is of great importance in 
agricultural processes as it affects the 
soil's physical, chemical and biological 
processes (Neitsch et al, 2005; Sandor 
and Fodor, 2012; Kunkel, et al 2016). 
For example, the germination of 
seedlings, the growth of plant and the 
uptake of nutrients are dependent, 
among other metreological factors, 
on the soil temperature. Excessively 
high soil temperature results in 
extreme condition known as drought, 
which causes environmental and 
agricultural catastrophe. Flood is 
another undesirable environmental 
condition which stems from the 
occurrence of extremely low soil 
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temperature. Furthermore, soil 
temperature is important in solar 
energy-based heating and cooling 
applications, ground based heat pump 
applications as well as frost forecasting 
(Mihalakakou, 2002; Shah et al, 2019; Sun 
et al, 2020). All these are quite controllable 
if the dynamics of this temperature is 
known prior to their occurrence. Similarly, 
a good knowledge of soil temperature is 
particularly useful in agricultural 
metreology. In addition to this, It is well 
known that the quantity of solar radiation 
incident on a particular area of land 
affects soil temperature (Russell 1973, 
Haskell et al, 2010) and this quantity of 
solar radiation also depends on such 
parameters as the aspect, slope, percent 
canopy cover (Haskell et al, 2010; 
Sandor and Fodor, 2012) etc. It is not 
surprising therefore, that different 
subcontinents across the globe are 
predisposed to varying soil temperature 
dynamics. Besides, soil temperature is 
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a pivotal variable in the global discuss 
to better place and monitor the global 
warming theory (Stocker et al, 2013).
 Soil temperature measurement is 
often required for significant 
intervention in real world processes 
and to forestall extreme conditions, 
such as flood and draught including 
global warming. Unfortunately, actual 
measurement at the time of application 
is practically impossible because of the 
spontaneous nature of such extreme 
temperature effects, hence the need for 
the characterisation of its overall 
dynamics, in order to understand the 
underlying behaviour of this dynamics. 
Nonlinear time series analysis provides 
very useful approach in this regard, 
which helps us to understand not only 
the empirical data as observed but also 
the complicated details of the 
nonlinear behaviour of the process.
 In all the studies above, the 
existence of chaos has not been 
established. However, the proportional 
course-effect mechanism is not 
applicable in many real-world situations. 
In fact, chaotic behaviour has been 
found in temperature related 
dynamics. For instance the source of 
motivation for this work is the results 
of the study by Fenga et al, 2019, in 
which the presence of chaos in the 
near - sur face temperature was 
investigated. The present analysis 
includes the estimation of the embedding 
dimension and the Lyapunov exponent.  

 Time series analysis has paved the 
way for numerous developmental and 
interdisciplinary applications in 
increasing fields of studies, which include 
medical sciences, natural sciences and 
agricultural sciences. Examples of these 
applications are ubiquitous, among which 
is the characterisation of the dynamics 
exhibited by empirical data such as 
rainfall-runoff dynamics (Sivakumar et al, 
2001) and the ionospheric plasma 
dynamics (Ogunsua et al, 2014), as well as 
the prediction of future dynamical 
behaviours of the observed data ranging 
from the forecast of future trend of climatic 
and metreological coordinates (Günes et 
al, 2014) to those in finance. The interest 
in the analysis of these real-world 
observations along temporal dimension 
otherwise called time series, originates from 
the fact that such data are available in large 
quantity taken over long periods, which 
fascinatingly display the previous dynamics 
of the measured variable. Some of these 
dynamics possess obvious trends, while 
some others possess a rather complex, but 
deterministic evolutions. However, 
understanding of the actual nature or 
classification (whether trendy, cyclical, 
seasonal, or complex) of time series of 
interest is fundamental to further and future 
applications. Therefore the focus of this 
present work is to characterise surface soil 
temperature time series and hence its 
dynamical behaviour (Liu, 2010; 
Athiyarath et al, 2020).  
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The presence of chaos in dynamical 
systems is not undesirable all the time. 
This phenomenon does enhance 
determinism sometimes, while  
presenting chaoticity. Hydrological 
variables such as rainfall and run-off 
have been characterised and predicted 
with better precision by utilising the 
chaoticity in their time series (Puente 
and Obregon, 1996; Sivakumar, 1999; 
Stehlic, 1999; Kasovskaia et al, 1999; 
Sivakumar et al, 2001). In addition, 
chaos is a valuable phenomenon in the 
functionalities of human brain (Liu, 
2010)    
 Over the years, considerable effort 
has been committed to unravel the 
methodologies and concepts that help 
to understand the dynamical 
behaviours of time series observed in 
climatology including temperature 
dynamics. In this regard, remarkable 
success has been reported in the 
literature (e.g. Mihailovi? and Mimi?, 
2012; Ogunlela, 2003; Sandor and 
Fo d o r,  2 0 1 2 ;  N w a n k w o  a n d  
Ogagarue, 2012).  However, majority 
of these works considered the 
dynamics of soil temperature as 
periodic; meanwhile the model 
attempt that uses the force-restore 
approach to calculate the ground 
interface temperatures as well as other 
climatic variables reported that soil 
temperature exhibits complex 
behaviours (Mihailovic and Mimic, 
2012). This behaviour is due to a lot of 
complex interactions between 
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essential processes that take place at 
the boundary e.g. chemical, biological 
and physical processes including the 
transformation of energy at the 
boundary. Indeed, the application of 
chaos theory to characterise time series 
data have been proven to be more 
effective in a number of areas including 
hydrology (Sivakumar et al, 2001; 
Dhanya and Kumar, 2011). Nonlinear 
time series may be reproduced (with 
respect to prediction) with minimal 
error using deterministic chaos theory 
without recourse to the underlying 
mechanisms. The advantage of 
deterministic chaos theory over the 
statistical approach, which employed 
few statistical parameters to analyse 
the dynamics (Sivakumar et al, 2001), 
is that the whole process that 
engendered the observed behaviour of 
the time series is fully captured.  In 
order to typify nonlinear time series 
such as the one in this present work, 
sufficient chaos identifiers have been 
proposed and widely used in the 
literature (Ott, 1993; Alligood et al, 
1997; Liu, 2010). Notable among them 
are the delay embedding procedure by 
Takens, 1981, which carefully 
incorporates the estimation of the 
hitherto unknown system's coordinates 
(dimensions) to unfold the attractor of 
the time series in the phase space and 
the calculation of the Lyapunov 
exponent, which has widely been 
employed as a confirmatory estimator 
of chaotic signature. These parameters 
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are sufficient because they are 
invariants of the system (Liu, 2010).  

2.  Data used and methods of analysis
The time series of the soil temperature 
(ST) data observed with 5-minutes 
interval in Redeemer's university, 
located in southern Nigeria, is analysed 
to examine and characterise the 
dynamics of ST in Nigeria. The ST data 
were  measured  us ing  Yong ' s  
temperature sensor, calibrated to 
capture temperatures in the range -50 to 
50 oC within  oC accuracy. This present 
study utilised 105,408 data points taken 
over 12 months - from 12:00 am January 
1st to 23:55 pm December 31st, 2012.  
The climate of the study area is mainly 
the tropical rainforest. Fig. 1 below 
shows the position of the study area in 
Ogun state of Nigeria. 
 Interestingly, inferences from time 
series data hinge largely on the 
successful reconstruction of the 
unknown phase space of the series 
(Packard et al, (1980), Kocak et al, 
2004). This is necessary to deduce the 
embedding parameters such as the 
embedding dimension, d and the 
optimum time delay, r. The embedding 
dimension measures the optimum 
number of independent variables 
required to project the attractor of the 
series unto the phase plane. Many 
methods have been proposed for the 
calculation of the embedding dimension, 
among which is the prominent duo: the 
Grassberger's correlation dimension 

(Grassberger and Procaccia, (1981)) 
and the notion of nearest neighbour 
distance proposed by Badii and Politi 
(Bidii and Boliti, 1985), which became 
well adopted following the literature 
report by Kennel et al, 1992. A finite 
embedding  d imens ion  i s  an  
indication that the reconstructed 
phase space is non-periodic.     
 The reconstruction of the phase 
space is such that a scalar time series 
X , where i=1,2,,,,N, is represented by i

m- dimensional phase space (m is the 
embedding dimension of the attractor), 
which is the representation of all the 
dynamical variables of the system. In 
this way the attractor gives a rich 
dynamical insight as regards the 
complexity of the original dataset. 
According to Takens (1981); Pachard 
(1980); Dhanya and Kumar (2010), 
the reconstructed phase space may be 
written as   

where,                             d is 
the dimension of the attractor and    is 
t h e  t i m e  i n t e r v a l  b e t w e e n  
observations.  The embedding 
dimension is chosen such that       . 
The time delay  plays a crucial role in 
the desirability of the reconstructed 
attractor. Supposing the time delay   is 
chosen, where,         there exists a high 
correlat ion between adjacent  
coordinates on the phase space. The 
implication of this phenomenon is that 
the coordinates become inseparable 

*
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leading to topological deformation of 
the attractor. Another possible 
scenario is that the delay time is 
chosen such that       , In this case, 
there is significant loss of correlation 
between adjacent coordinates leading 
to complete independence between 
the state variables (Kostelich and 
Swinney, 1989). Two methods have 
been widely reported in the literature 
for choosing the optimum time delay: 
the autocorrelation method (Dondurur, 
2018) and the mutual information 
method (Fraser and Swinney, 1986).  It 
has been shown that the mutual 
information function is preferably 
applied for nonlinear problems (Kocak et 
al, 2004), autocorrelation function 
measures the linear relationship 
between neighbours. The method of 
mutual information is used in this 
work to estimate   . 
 The signature of chaotic behaviour 
is identifiable via the estimation of the 
Liapunov exponent corresponding to 
the chaotic system. This invariant of 
the system measures the mean 
exponential rates of divergence or 
convergence close manifolds in the 
phase space of the system (Wolf et al, 
1985). A positive maximum Lyapunov 

exponent shows the presense of chaos 
in the data set. For a zero maximum 
Lyapunov exponent, a limit cycle or a 
quasiperiodic orbit is implied, while a 
negat ive maximum Lyapunov 
exponent represents a fixed point. 
The algorithm for the estimation of 
this exponent often suffers some 
disadvantages which include partial 
usage of the dataset, variations in the 
estimated embedding parameters and 
noise that may be inherent in the 
observed dataset (Wolf et al, 1985; Sato 
et al, 1987). Here an improved 
algorithm is considered which is 
robust and stable against slight 
changes in data size, values of 
embedding parameters etc (Kantz, 
1994; Rosentein et al, 1993). After 
Rosentein et al, (1993), the largest 
Lyapunov exponent is calculated from 
the lines given by the equation 

                   (2)

where d (i) represents the distance j

between jth pair of nearest neighbours 
after    seconds,  and (.) is the average 
over all j. The application of least-
squares fit to the average lines given by 
Eq. (2) provides the largest Lyapunov 
exponent    . 

Table 1. The statistical parameters of the soil temperature data.  

 Parameters Min Max Mean Med Mode Std Range

Values 24.01 35.83 28.81 28.73 28.84 1.75 11.82
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Fig. 1: The time series of the rain rate data for the year 2012.

 3.  Results and discussion
The soil temperature series spanned a 
period of 12 months as highlighted in 
section 2, from 1st January to 31st 
December, 2012 (Fig. 3a). Before the 
generic report of the dynamical 
behaviour of the ST time series, it is 
interesting to note some descriptive 
parameters that let us understand 
some short-term or local behaviour of 
the ST. In this way, the non-stationary 
nature of the series would be appreciated, 
especially as regards the importance of ST 
in agriculture. Agricultural practice 
accord regards to seasons such as rainy 
and dry seasons, during which 
agricultural activities are planned 
accordingly (this might be relatively 
suppressed by irrigation system 
though). 
 Consequently, we employed 
descriptive statistical tools to this 
seasonal trend. Tab.1 gives the 

summary of the statistical features of 
the time series. The average annual 
ST is 28.81 0C, with the deviation of 
1.75 0C. The difference between the 
extreme values of the time series in the 
year 2012 stands at 11.82 0C, with 
28.84 0C being the most observed 
value. Table 1 also showed that the 
annual ST variability attained a high 
of about 35.83 0C at the Redeemer's 
University during the dry season, 
especially at its peak in March (please 
see Fig. 2b). The dry season in Nigeria 
is the period between November and 
March. It is also shown in Table 1 that 
the soil temperature has annual lows 
in the neighbourhood of 24.01 0C 
during the rainy season, notably 
between May and August.
 Fig. 1 showed the time series of the 
rain rate data observed at the same 
time interval with the soil temperature 
data in the same station. Apart from 
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the precipitation, soil temperature is 
also influenced by properties of the 
soil on which the process of heat flow 
in the soil depends; the vegetation 
(Anctil et al, 2008; Zheng et al, 1993; 
Kang et al, 2008) as well as the 
possible atmospheric irregularities 
(e.g. Ogunsua et al, 2014; Hu and 
Feng, 2003). Fig. 2a gives the ST 
variability in the year under study.  
Figs. 2b and 2c showed the expanded 
view of the ST variability.  Fig. 2c 
showed that the lowest temperature 
was observed on the last day of July 

(31st July, 2012). This plot showed a 
sharp decline in the ST to the 
minimum ST point. The observation 
of the low ST may be attributed mainly 
to the consequence of a long period of 
soil cooling activity due to the 
relatively heavy rainfall, which lasted 
for almost the whole day with the 
highest rain rate of 25.2 mm as shown 
in Fig. 1. It is necessary to note here 
that the lowest observed ST does not 
necessarily correspond to the 
occurrence of the highest rain rate, 
which was observed in April with the 
rain rate of 50.4 0C as shown in Fig. 1.
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Fig. 3: Soil temperature time plots, (a) 
for the 12 months data, (b) for a shorter 
period to show the peak temperature 
and (c) for a shorter period to show the 
lowest temperature.
 Very critical in the process of 
finding the topological equivalence of 
the ST dynamics attractor is the way the 
delay time and embedding dimension 
are chosen (Takens, 1981). The idea of 
applying time delay to derive new d-
dimensional series of vectors from the 
original attractor of the system is to 
track as much as possible information 
from the collection of observations, 
which is comparable with the slow and 
fast scales formalism otherwise called 
the multiple time scales method 
applicable in perturbation analysis. 
While the fast time scale could be too 
fast as to have left some information 
necessary to recover the attractor of the 
dynamics underlying the behaviour of 
the observed variable, a slow time scale 
such as proposed in the delay 
embedding procedure includes such 
information in the reconstructed vector 
series. Therefore, a carefully chosen 
delay time helps obtain a sufficient and 
appropriate form of Eq. (1) for further 
analysis.  To this end, based on the 
discussion in section 2 we applied the 

average  m u t u a l  i n f o r m a t i o n  
technique to obtain the delay time for 
the ST time series.  Fig. 3(a) shows the 
average mutual information plot, with 
its first minimum corresponding to 
point 2 on the delay time axis; hence 
giving the optimal delay time, .  In 2=t
Fig. 3(b), the embedding dimension is 
calculated using the fraction of false 
neighbours (FNN). The value of the 
embedding dimension at which FNN 
drops to zero is chosen as the optimal 
value, i.e. . The implication of this 6=d
is that six coordinates are necessary to 
correctly display the attractor of the 
ST dynamics in the phase space. The 
strange attractor corresponding to 
this dynamics is shown in Fig. 3(c). The 
attractor shows that the behaviour of 
the ST dynamics is sensitive to initial 
condition.
 The chaoticity or otherwise of any 
dynamical system can be identified by 
the value of the Lyapunov exponent, 
as earlier explained in section 2. Fig, 4 
shows the variation of the Lyapunov 
exponent with time for the ST 
dynamics. The calculated maximum 
Lyapunov exponent is 0.0061.  This 
identifies the dynamics as chaotic, 
which also serves as a confirmatory 
measure for the chaotic nature of the 
ST dynamics. 
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ST ( )

Fig. 3: The delay embedding plots: 
(a) the average mutual information 
(Ave. MI) against delay time (b) the 
fraction of false nearest neighbour 

against embedding dimension (c) the 
reconstructed phase space of the soil 
temperature dynamics, with   = 2
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Fig. 4:  The Lyapunov exponent of the soil temperature dynamics

 4.   Conclusions 
 In this present work, we aimed at 
the possibility of understanding the 
behaviour of soil temperature dynamics 
from the perspective of nonlinear time 
series analysis. The 5-mins interval soil 
temperature data observed continuously 
over a period of 1 year (from January to 
December, 2012) were analysed to 
investigate the existence of chaos. We 
employed the method of false nearest 
neighbour carefully interlaced with the 
average mutual information method to 
reconstruct the original attractor of the 
soil temperature's evolution process. 
The Lyapunov exponent, in addition to 
the strange attractor of the process, was 
also employed to identify chaos. 
 The results indicated a finite value 
for the embedding dimension for the 

system, indicating that the system is 
chaotic. Furthermore, the positive value 
of the Lyapunov exponent is a 
confirmatory result as regards the chaotic 
napture of the soil temperature time 
series. In general, this present study 
suggested that it is possible to understand 
the underlying process of the soil 
temperature evolution via the application 
of nonlinear dynamics theory. 
 This present work addressed a 
significant aspect of our proposed 
study on the soil temperature time 
series. The understanding of the 
chaotic nature of the time series gives 
the opportunity for further investigation 
such as the prediction of soil temperature, 
a basic necessity for agricultural processes 
as well as the control of extreme 
temperature conditions.   
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