
DDoSDetect: A Behavioral Detection System for
HTTP GET Flood Attacks

1* 2 3
Tinubu C.O., Falana O.J., Aborisade D.O.,

4 5
Adejimi O.A and Akinmusire C.B

1,2,3,4,5Department of Computer Science,
Federal University of Agriculture, Abeokuta, Nigeria.

1 2
tinubuco@funaab.edu.ng *, falanaoj@funaab.edu.ng ,

3 4
aborisadedo@funaab.edu.ng , adejimioa@funaab.edu.ng ,

5
akinmusirecharles@gmail.com

7

102

Journal of Applied Science and Technology (MUJAST)

ABSTRACT
Application layer Distributed Denial of Service (DDoS) attacks are becoming increasingly prevalent on
Internet based web services. Severe HTTP GET flood attacks are often launched by attackers, wherein web
servers become overwhelmed with superfluous GET requests. This exhausts the processing and connectivity
resources of the servers, hence resulting in service failures. As availability of services is key to online service
providers, this work presents a behavioral based detection system named 'DDoSDetect' for HTTP GET flood
attacks. In DDoSDetect, a traffic monitor tracks incoming GET requests sent to the server. Four distinct
behavioral features such as the rate of requests, time interval between successive requests, session rate and the
frequency of requests on a web page, are employed to analyze user's behaviors. A detection unit driven by three
phases: LRP (Legitimate Request Phase), IRP (Illegitimate Request Phase) and SVM-RC (Support Vector
Machine-Request Classifier) is designed to intelligently classify incoming GET requests. Illegitimate GET
requests are dropped while legitimate requests are forwarded to the web server. DDoSDetect is implemented
and results obtained from evaluation processes signify the effectiveness of the system towards the mitigation of
HTTP GET flood attacks. Also, the system is real time and capable of handling sophisticated attacks.

Keywords - Application layer, availability, DDoS attacks, HTTP GET flood, Internet,
web server.

1. Introduction
Modern industries and organizations

depend on the Internet to provide web-
based services to their customers/clients.
Web applications provide information
and services to users without time or space
constraints (Praseed and Thilagam,
2018). As web applications are becoming
increasingly relevant for businesses,
financial institutions and government, a
growing number of online services utilize
application layer protocols such as
Hypertext Transfer Protocol (HTTP),
Domain Name System (DNS), Simple
Mail Transfer Protocol (SMTP), etc.
However, these applications have
become targets to many distributed and
sophisticated attacks. Such attacks
include Phishing attacks, Password
attacks, Malware attacks, Man-in-the-
middle attacks and Distributed Denial
of Service attacks. These attacks are

being launched to compromise the
confidentiality, integrity and availability
of targeted systems. It therefore becomes
pertinent to ensure the security of web
servers at all times as web applications
are greatly influencing businesses and
services.
 Distributed Denial of Service
(DDoS) attacks are one of the most
devastating attacks on the Internet. A
DDoS attack is a coordinated attack on
the availability of services of a given
target system, being launched through
many compromised computing
systems (Singh and Gupta, 2016).
DDoS attacks are aimed at exhausting
the processing and connectivity
resources of a victim server, resulting
in a partial or total unavailability
(Yusof et al., 2019). They are deliberate
attempts by attackers to degrade the
quality of service of a system. Usually, the

103

Journal of Applied Science and Technology (MUJAST)

attackers utilize a network of
compromised Internet-connected
devices known as a botnet to flood
targeted servers. Flooding-based DDoS
attacks seek to deny services to legitimate
users by invoking vast amounts of bogus
requests, thereby exhausting key
resources of the victim (Bhardwaj et al.,
2016). These attacks cause devastating
effects such as service interruption,
reduced quality of service, loss of
confidentiality, reputational damages,
huge financial losses, breach of contracts
and loss of users' trust.
 An emerging form of Flooding
DDoS attacks is persistently targeting
the application layer. In recent years,
cybercriminals are now turning to
Application layer DDoS attacks. Unlike
Network layer DDoS attacks which
exhausts the network bandwidth of a
server, Application layer attacks target
the exhaustion of resources of a web
server such as CPU cycles, database
cycles, memory and/or socket
connections. Network layers attacks are
volumetric attacks relying on a large
chunk of network layer packets to
deplete the bandwidth. Network layer
protocols such as UDP (User Datagram
Protocol) and ICMP (Internet Control
Message Protocol) are often employed
to launch such attacks.
 In Application layer DDoS attacks,
the application layer of the Internet is
exploited to disrupt the normal flow of
traffic to a web server. Multiple requests
from a compromised host who

masquerades as legitimate users flood
the server and exhaust its resources.
Usually, attackers target high-profile
web servers that provide specific
services. Application layer attacks can
pull down a server much faster and
with higher stealth than network layer
attacks (Praseed and Thilagam, 2018).
With application layer attacks, users
lose interests in the services of the
victim organization if periodic attacks
leave the website(s) inaccessible.
 Being the dominant part of the
Internet, the Hypertext Transfer
Protocol (HTTP) is highly susceptible
to flooding attacks (Singh et al., 2017).
HTTP is a client-server protocol and
the foundation of any data exchange on
the web. In an HTTP flood attack, the
attacker exploits seemingly-legitimate
HTTP GET or POST requests to
overwhelm a targeted server. As these
requests have legitimate IP addresses
and are sent through valid TCP
connections, they become difficult to
detect with existing defense mechanism
such as Intrusion Detection System
(IDS), filtering or blacklisting techniques.
 HTTP GET Flood attack is the
most common DDOS attack on the
application layer of a network
(Mirvaziri, 2017). During the attack, a
bot sends multiples of GET requests to
the server and awaits responses like a
legitimate user. Consequently, the
request queue increases spontaneously
and the server becomes obliged to
allocate the maximum resources

104

possible in response to every GET
request (Jaafar et al., 2019). The
computational resources of the web
server gets exhausted as the server
processes and responds to malicious
requests, thereby denying subsequent
incoming requests from legitimate
users. Detecting HTTP GET flood
attacks is particularly challenging as
malicious request packets often
appear similarly to normal request
packets (Najafabadi et al., 2017). In an
attempt to evade detection, a stealthy
attacker launches sophisticated
attacks that closely mimic the
behaviors of genuine GET requests.

Our Contribution
The rising sophistication of HTTP
GET flood attacks necessitates
continuous research efforts towards
preserving the availability of web
services. In this work, we develop an
efficient behavioral-based detection
system namely DDoSDetect for the
mitigation of HTTP GET flood
attacks. The system is based on four
carefully selected behavioral features
that can distinctly differentiate genuine
GET requests from the illegitimate
requests. More precisely, the system is
an intelligent one targeted at
sophisticated attacks. Moreover, the
system is real-time and ensures an
overall availability of web servers.

The rest of the paper is organized as
follows. Section 2 discusses the

Journal of Applied Science and Technology (MUJAST)

existing works on the detection of
HTTP GET flood attacks. Section 3
describes the methodology of the
proposed system 'DDoSDetect', giving
details on its feature selection,
architecture and algorithms. In Section
4, the obtainable experimental results
are presented and evaluated. Finally, in
Section 5, we conclude the work.

2. Literature Review
 Several efforts in literatures have
focused on the detection of HTTP GET
flood attacks. Some studies focused on
puzzle-based methods (Ko et al., 2010),
load balancing mechanism (Spagna et
al., 2013), hardware mechanism (Jin et
al., 2010), access control lists and
hidden cache of the browser (Ak et al.,
2012) and IP Hopping (Choi et al.,
2010). But none of these approaches
proffer effective solutions for
Application-layer DDoS attacks
detection.

Some efforts have been geared towards
analyzing user's biometric behavior for
the detection of malicious traffic. Such
approaches involve leveraging on
features based on user's interactions
with the system for their authentication.
The use of keystrokes, mouse dynamics
and interaction with a graphical user
interface (GUI) (Stevanovic and Vlajic,
2014; Jin et al., 2010; Abramson and
Aha, 2013; Shen et al., 2013; Bravo
and Mauricio, 2018) have been
considered. Nevertheless, real users

105

Journal of Applied Science and Technology (MUJAST)

and robots cannot be differentiated
while using these approaches.
 Detecting GET flood attacks by
monitoring anomalies in user's
browsing behaviors have been greatly
explored. Characteristics such as speed
of browsing pages (Yatagai et al., 2007),
number of users and requests (Ranjan et
al., 2008), entropy of request type
(Huang et al., 2014), request count
(Singh et al., 2017), click number of web
objects (Zhou et al., 2014; Wang et al.,
2014), IP address (Campo et al., 2013),
number of bytes sent in 1 second
(Zolotukhin et al., 2016) users browsing
process (Dick and Scheffer, 2016), web
page requested (Saravanan et al., 2016),
attack rate (Thapngam et al., 2011) etc.,
have been employed to detect
variations from normal behaviors.
Many of these models have germane
weaknesses as their choices of features
are not sufficient to counter
sophisticated attacks.
 In (Xie and Yu, 2009), the authors
proposed modeling the sequence
order of legitimate page requests and
characterizing legit imate and
suspicious browsing behaviors based
on Hidden semi Markov Model
(HsMM). Liao et al. (2015) adopted
Support Vector Machine (SVM) to
analyze user's browsing behaviors
based on access frequencies, especially
request time interval and frequency of
requests. Miu et al. (2016) proposed
monitoring the sequence of user's web
page access to identify anomalous

users. Singh et al. (2018) also proposed
user-behavioral analytics for detection
of HTTP GET flood attacks. These
approaches while detecting attacks
could not attain efficiency as they are
not updated in real time and cannot
handle sophisticated attacks.
 These existing researches indicate
that the variations of behavioral patterns
between legitimate users and attackers
have great potentials to distinguish
human users from attack bots. Hence,
this paper presents an improved
behavioral-based system for the
detection of HTTP GET flood attacks.

3. Methodology
 There is an inherent need to
improve detection solutions for HTTP
GET flood attacks through intelligent
and real-time mechanisms. The
detection of these attacks requires a high-
level monitoring of all GET requests sent
to the server. The proposed system
named 'DDoSDetect' is built on a
behavioral analysis of incoming HTTP
GET requests.

Four features are employed to analyze
the behaviors of all GET requests sent
to the server.
These features are carefully selected and
targeted at distinguishing legitimate
users from sophisticated bots. They are:
Ÿ Rate of GET requests: this is the

number of GET requests sent to
the server in a specific time
interval, measured in requests per
second. This feature is adopted by

106

Journal of Applied Science and Technology (MUJAST)

considering that the request rate
of bots will be higher than those
of legitimate users.

Ÿ Time interval between successive
GET requests: this is the time
difference between two successive
GET requests sent from a particular
IP address, measured in seconds.

Ÿ Session rate: this is the number of
sessions initiated by a particular
IP address during a specific
period of time, measured in
sessions per seconds.

Ÿ Frequency of requests: this is the
number of requests made on a
particular web page in one session.

Normal traffic from a dataset was
investigated to obtain typical
browsing behaviors of users over a
period of time. This observation runs
on a time frame of 180 minutes. The
behaviors of the legitimate GET
requests are used as standards to flag
anomalies in the proposed system.
Such legitimate behaviors observed
within each time frame are analyzed,
and the following characteristics are
deduced.

= maximum rate of GET requests
from a legitimate user

= minimum time interval between
successive legitimate requests

= maximum session rate of a
legitimate user

= maximum number of legitimate
requests on a web page in a session

A function F is derived from the
characteristics obtained from legitimate
GET requests to compute two
classification zones, namely Safe and
Danger zones. The Safe zone refers
to a class in which the resources of a
server are safe from being overwhelmed.
The Danger zone refers to a class in
which the resources of a server are at a
great risk of being overwhelmed,
resulting to a DDoS attack.
The function F is computed as
represented in
 (1).

For each connected user, Index I using
(2) is calculated from the behavioral
features of the incoming GET
requests.

where R = rate of requests, N =i i

frequency of requests, S =session rate i

and T = time interval.i

Safe zone: A computed Index I is in a Safe

zone Sz if:

Danger zone: A computed Index I is in a
Danger zone Dz if:

107

Journal of Applied Science and Technology (MUJAST)

The Detection System
The detection system 'DDoSDetect'
essentially is comprised of two
components namely: Traffic Monitor
and Detection Unit as shown in
Figure. 1. The traffic monitor is an
interface showing the details of each
HTTP GET request sent to the web
server. The traffic monitor tracks the
flow of all requests to the web server.
Through the monitor, the behavioral
features of incoming GET requests are
captured for analysis. The detection
u n i t i s re s p o n s i b l e f o r t h e
classification of GET requests as either
legitimate or illegitimate requests.

The Detection unit of DDoSDetect is
divided into three phases. These are:
l The Legitimate Request Phase (LRP):

This phase is designed to verify if the
incoming GET requests fall within the
Safe zone. The verification is done
through the computed Index of the
user's behavioral features. Requests
that are classified as being legitimate
are forwarded to the web server.
Otherwise, the requests are passed
on to the Illegitimate Request Phase.

l Illegitimate Request Phase (IRP):
This phase is designed to verify if the
incoming GET requests fall within
the Danger zone. The verification,
which is achieved through the
computed Index of the user's
behavioral features, determines if the
GET requests are illegitimate
requests. Such requests are blocked,

thus preventing the web server from
committing resources to its
processing.

l Support Vector Machine-Request
Classifier (SVM-RC): Some
attacks are highly sophisticated and
carefully designed by rational
attackers such as to evade detection.
In DDoSDetect, considerations have
been made for such attacks as they
may not fall within the classified Safe
and Danger zones. Consequently, an
intelligent phase called the Support
Vector Machine-Request Classifier
(SVM-RC) is designed to detect such
malicious requests. When the
Legitimate Request Phase (LRP) and
Illegitimate Request Phase (ILP) cannot
classify a request, the trained Support
Vector Machine (SVM) classifier is
applied to identify the attacks.

The method, as shown in Algorithm 1
is based on the Support Vector
Machine (SVM), a machine learning
classifier. A SVM algorithm builds a
robust classification model. Support
Vector Machines operates on the
principle of creating a hyperplane that
separates dataset into classes. The
extreme vectors that help in creating
the hyperplane are chosen. The
dimension of the hyperplane is
dependent on the features present in
the data set. As there are four
proposed features, the hyperplane will
be a 3-dimension plane.

108

Journal of Applied Science and Technology (MUJAST)

Fig. 1: Architecture of the Proposed 'DDoSDetect'

4. IMPLEMENTATION AND
EVALUATION OF RESULTS

The system implementation of
'DDoSDetect' was done in JetBrains
PyCharm Integrated Development
Environment (IDE) using PCs with
64-bit Windows Operating System,

Intel core i3, 1 Terabyte Hard disk
drive, 4GB RAM and 2.00GHz CPU.
Low Orbit Ion Cannon (LOIC), a
software tool was employed to launch a
DDoS attack on the web server.

109

Journal of Applied Science and Technology (MUJAST)

Fig. 2: Output from DDoSDetect showing a malicious GET request

Figure 2 shows the reaction of
DDoSDetect on detecting a malicious
HTTP GET request. The performance
of DDoSDetect is evaluated using
metrics such as: Accuracy, Precision,
Recall and F-measure.
i) Accuracy: is the most intuitive

performance measure. It reflects
the overall effectiveness of a
classifier.

Accuracy

ii) Precision: is the ratio of correctly
predicted observations to the total
predicted positive observations.

Precision =

iii) Recall: is the ratio of correctly
predicted positive observations to
the total observations in actual class.

Recall =

iv) F-measure: is the weighted mean of
the precision and recall of the
classifier.

F-measure =

where,
True Positive (TP) denotes the number
of malicious GET requests correctly
classified.
False Negative (FN) denotes the
number of malicious GET requests
erroneously classified as benign
requests.

110

Journal of Applied Science and Technology (MUJAST)

Fig. 3: Performance Comparison of
SVM-RC in DDoSDetect with One
Rule and Random Forest classifiers

False Positive (FP) denotes the number
of benign GET requests erroneously
classified as malicious requests.
True Negative (TN) denotes the
number of benign GET requests
correctly classified.

Performance Comparison of
DDoSDetect with Traditional Models
To compare the effectiveness of
DDoSDetect with traditional models,
several experiments were performed
using different classifiers in a
JetBrains PyCharm Integrated
Development Environment (IDE).
The Support Vector Machine-Request
Classifier (SVM-RC) in DDoSDetect,

OneRule and Random Forest
algorithms were used separately on
the test dataset based on the four
selected features to investigate the
performance of the models. The
results of the experiments as shown in
Figure 3 show that the Support Vector
Machine-Request Classifier (SVM-RC)
has the best accuracy of 97.2% in
comparison with other classifiers as
OneRule and Random Forest
algorithms with an accuracy of 91.6%
and 94.4% respectively.

4. CONCLUSION
Web servers that run on Hypertext
Transfer Protocol (HTTP) are
vulnerable to Distributed Denial of
Service (DDoS) attacks. HTTP GET
Flood attack is the most common DDoS
attack on the application layer of a
network. Application layer attacks
target the exhaustion of resources of a
web server such as CPU cycles, database
cycles, memory or socket connections.
These attacks cause unavailability of
services as attackers utilize botnets to
send huge numbers of malicious GET
requests to overwhelm the web server.
The resulting effects include service
interruptions, reduced quality of
service, reputational damages, huge
financial losses, breach of contracts
and loss of users' trust. In this work, a
behavioral based detection system was
presented for HTTP GET flood attacks.
The system named 'DDoSDetect' is based
on four behavioral features. DDoSDetect

111

leverages on the observed behaviors of
legitimate GET requests to detect
anomalies in the behaviors of attacking
bots to distinguish legitimate requests
from malicious requests. Incoming GET
requests are classified by DDoSDetect such
that malicious requests are dropped and
the legitimate requests are forwarded
to the web server. Experimental results
show that the detection accuracy of
DDoSDetect outperforms other classifiers,
and thus effective at mitigating HTTP GET
flood attacks.

References
Abramson, M., & Aha, D. (2103). User

authentication from web browsing
behavior. 268-273.

Ak, M., George, L., Govind, K., &
Selvakumar, S. (2012). Threshold Based
Kernel Level HTTP Filter (TBHF) for
DDoS mitigation. International Journal
of Computer Network and Information
Security, 4(31).

Bhardwaj, A., Subrahmanyam, G.,
Avasthi, V., Sastry, H., & Goundar,
S. (2016). DDoS Attacks, New
DDoS Taxonomy and Mitigation
Solutions- A Survey. 793-798.

Bravo, S., & Mauricio, D. (2018).
Distributed Denial of Service Attack
Detection in Application Layer Based
on User Behavior. Webology, 15.

Campo, G., Cristina, C., de Diego, I.,
& Enrique, C. (2013). Detecting
denial of service by modelling
web-server behavior. Computers

Journal of Applied Science and Technology (MUJAST)

and Electrical Engineering, 39,
2252-2262.

Choi, Y., Oh, J., Jang, J., & Ryou, J.
(2010). Integrated DDoS attack
defense infrastructure for effective
attack prevention. 1-6.

Dick, U., & Scheffer, T. (2016).
Learning to control a structured-
prediction decoder for detection
of HTTP-layer DDoS attackers.
Machine Learning, 104, 385-410.

Huang, C., Wang, J., Wu , G., & Chen,
J. (2014). Mining Web User
Behaviors to Detect Application
Layer DDoS Attacks. JSW, 9, 985-
990.

Jaafar, G., Abdullah, S., & Ismail, S.
(2019). Review of recent detection
methods for HTTP DDoS attack.
Journal of Computer Networks
and Communications.

Jin, J., Nodir, N., Im, C., & Nam, S.
(2010). Mitigating HTTP GET
F looding a t tacks through
modified NetFPGA reference
router. Asia NetFPGA Developers
Workshop.

Kim, Y., & Kim, I. (2014). Involvers'
behavior-based modeling in cyber
targeted attack. SECUREWARE.

Ko, N., Noh, S., Park, J., Lee, S., & Park,
H. (2010). An efficient anti-DDoS
mechanism using flow-based
forwarding technology. 9, 1-3.

Liao, Q., Li, H., Kang, S., & Liu, C.
(2015). Application layer DDoS
attack detection using cluster with
label based on sparse vector

112

Journal of Applied Science and Technology (MUJAST)

decomposition and rhythm
m a t c h i n g . S e c u r i t y a n d
Communication Networks, 8,
3111-3120.

Mirvaziri, H. (2017). A new method to
reduce the effects of HTTP GET
Flood attack. Future Computing
and Informatics Journal, 2, 87-93.

Miu, T. W., Luo, D., & Wang, J. (2016).
Modeling user browsing activity
for application layer DDoS attack
detection. 747-750.

Najafabadi, M., Khoshgoftaar, T.,
Calvert, C., & Kemp, C. (2017).
User behavior anomaly detection
for application layer DDoS attacks.
I n f o r m a t i o n R e u s e a n d
Integration (IRI), 154-161.

Praseed, A., & Thilagam, P. (2018).
DDoS attacks at the application
layer: Challenges and research
perspectives for safeguarding Web
applications (No. 2; IEEE
Communications Surveys &
Tutorials, pp. 661-685).

Ranjan, S., Swaminathan, R., Uysal,
M., Nucci, A., & Knightly, E.
(2008). DDoS-shield: DDoS-
resilient scheduling to counter
app l i ca t ion l ayer a t t acks .
IEEE/ACM Transactions on
Networking, 17, 26-39.

Saravanan, R., Shanmuganathan, S.,
& Palanichamy, Y. (2016).
Behavior-based detection of
application layer distributed
denial of service attacks during
flash events. Turkish Journal of

E l e c t r i c a l E n g i n e e r i n g &
Computer Sciences, 24, 510-523.

Shen, C., Cai, Z., Guan, X., Du, Y., & Maxion,
R. (2013). User authentication through
mouse dynamics. IEEE Transactions on
Information Forensics and Security,
8, 16-30.

Singh, G., & Gupta, M. (2016). Distributed
Denial-of-Service. Nternational
Journal of Innovative Research in
Science and Engineering, 2, 301-309.

Singh, K., Singh, P., & Kumar, K.
(2017). Application layer HTTP-
GET flood DDoS attacks: Research
landscape and chal lenges .
Computers & Security, 65, 344-372.

Singh, K., Singh, P., & Kumar, K.
(2018). User behavior analytics
based classification of application
layer HTTP-GET flood attacks.
Journal of Network and Computer
Applications, 112, 97-114.

Spagna, S., Liebsch, M., Baldessari, R.,
Niccolini, S., Schmid, S., Garroppo, R.,
Ozawa, K., & Awano, J. (2013). Design
principles of an operator owned highly
distributed content delivery network.
IEEE Communications Magazine, 51,
132-140.

Stevanovic, D., & Vlajic, N. (2014).
Application-layer DDoS in dynamic
Web-domains: Building defenses
against next-generation attack
behavior. Communications and
Network Security (CNS), 490-491.

Thapngam, T., Yu, S., Zhou, W., &
Beliakov, G. (2011). Discriminating
DDoS attack traffic from flash crowd

113

Journal of Applied Science and Technology (MUJAST)

through packet arrival patterns.
952-957.

Wang, J., Yang, X., Zhang, M., Long, K.,
& Xu, J. (2014). HTTP-SoLDiER: An
HTTP-flooding attack detection
scheme with the large deviation
principle. Science China Information
Sciences, 57, 1-15.

Xie, Y., & Yu, S. (2009). Monitoring the
Application-Layer DDoS Attacks for
Popular Websites. IEEE/ACM
Transactions on Networking, 19, 5-25.

Yatagai, T., Isohara, T., & Sasase, I.
(2007). Detection of HTTP-GET
flood attack based on analysis of
page access behavior. 232-235.

Yusof, A., Udzir, N., & Selamat, A.
(2019). Systematic literature review

and taxonomy for DDoS attack
de tec t ion and pred i c t ion .
International Journal of Digital
Enterprise Technology, 3, 292-315.

Zhou, W., Jia, W., Wen, S., Xiang, Y., &
Zhou, W. (2014). Detection and
defense of application-layer DDoS
attacks in backbone web traffic.
Future Generation Computer
Systems, 38, 36-46.

Zolotukhin, M., Kokkonen, T.,
Hämäläinen, T., & Siltanen, J.
(2016). On application layer DDoS
attack detection in high-speed
encrypted networks. International
Journal of Digital Content
Technology and Its Applications
(JDCTA), 10, 14-33.

114

