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ABSTRACT
Application layer Distributed Denial of Service (DDoS) attacks are becoming increasingly prevalent on 
Internet based web services. Severe HTTP GET flood attacks are often launched by attackers, wherein web 
servers become overwhelmed with superfluous GET requests. This exhausts the processing and connectivity 
resources of the servers, hence resulting in service failures. As availability of services is key to online service 
providers, this work presents a behavioral based detection system named 'DDoSDetect' for HTTP GET flood 
attacks. In DDoSDetect, a traffic monitor tracks incoming GET requests sent to the server. Four distinct 
behavioral features such as the rate of requests, time interval between successive requests, session rate and the 
frequency of requests on a web page, are employed to analyze user's behaviors. A detection unit driven by three 
phases: LRP (Legitimate Request Phase), IRP (Illegitimate Request Phase) and SVM-RC (Support Vector 
Machine-Request Classifier) is designed to intelligently classify incoming GET requests. Illegitimate GET 
requests are dropped while legitimate requests are forwarded to the web server. DDoSDetect is implemented 
and results obtained from evaluation processes signify the effectiveness of the system towards the mitigation of 
HTTP GET flood attacks. Also, the system is real time and capable of handling sophisticated attacks.

Keywords - Application layer, availability, DDoS attacks, HTTP GET flood, Internet, 
web server.

1. Introduction
Modern industries and organizations 

depend on the Internet to provide web-
based services to their customers/clients. 
Web applications provide information 
and services to users without time or space 
constraints (Praseed and Thilagam, 
2018). As web applications are becoming 
increasingly relevant for businesses, 
financial institutions and government, a 
growing number of online services utilize 
application layer protocols such as 
Hypertext Transfer Protocol (HTTP), 
Domain Name System (DNS), Simple 
Mail Transfer Protocol (SMTP), etc. 
However, these applications have 
become targets to many distributed and 
sophisticated attacks. Such attacks 
include Phishing attacks, Password 
attacks, Malware attacks, Man-in-the-
middle attacks and Distributed Denial 
of Service attacks. These attacks are 

being launched to compromise the 
confidentiality, integrity and availability 
of targeted systems. It therefore becomes 
pertinent to ensure the security of web 
servers at all times as web applications 
are greatly influencing businesses and 
services. 
 Distributed Denial of Service 
(DDoS) attacks are one of the most 
devastating attacks on the Internet. A 
DDoS attack is a coordinated attack on 
the availability of services of a given 
target system, being launched through 
many compromised computing 
systems (Singh and Gupta, 2016). 
DDoS attacks are aimed at exhausting 
the processing and connectivity 
resources of a victim server, resulting 
in a partial or total unavailability 
(Yusof et al., 2019). They are deliberate 
attempts by attackers to degrade the 
quality of service of a system. Usually, the 
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attackers utilize a network of 
compromised Internet-connected 
devices known as a botnet to flood 
targeted servers. Flooding-based DDoS 
attacks seek to deny services to legitimate 
users by invoking vast amounts of bogus 
requests, thereby exhausting key 
resources of the victim (Bhardwaj et al., 
2016). These attacks cause devastating 
effects such as service interruption, 
reduced quality of service, loss of 
confidentiality, reputational damages, 
huge financial losses, breach of contracts 
and loss of users' trust. 
 An emerging form of Flooding 
DDoS attacks is persistently targeting 
the application layer. In recent years, 
cybercriminals are now turning to 
Application layer DDoS attacks. Unlike 
Network layer DDoS attacks which 
exhausts the network bandwidth of a 
server, Application layer attacks target 
the exhaustion of resources of a web 
server such as CPU cycles, database 
cycles, memory and/or socket 
connections. Network layers attacks are 
volumetric attacks relying on a large 
chunk of network layer packets to 
deplete the bandwidth. Network layer 
protocols such as UDP (User Datagram 
Protocol) and ICMP (Internet Control 
Message Protocol) are often employed 
to launch such attacks. 
 In Application layer DDoS attacks, 
the application layer of the Internet is 
exploited to disrupt the normal flow of 
traffic to a web server. Multiple requests 
from a compromised host who 

masquerades as legitimate users flood 
the server and exhaust its resources. 
Usually, attackers target high-profile 
web servers that provide specific 
services. Application layer attacks can 
pull down a server much faster and 
with higher stealth than network layer 
attacks (Praseed and Thilagam, 2018). 
With application layer attacks, users 
lose interests in the services of the 
victim organization if periodic attacks 
leave the website(s) inaccessible.
 Being the dominant part of the 
Internet, the Hypertext Transfer 
Protocol (HTTP) is highly susceptible 
to flooding attacks (Singh et al., 2017). 
HTTP is a client-server protocol and 
the foundation of any data exchange on 
the web. In an HTTP flood attack, the 
attacker exploits seemingly-legitimate 
HTTP GET or POST requests to 
overwhelm a targeted server. As these 
requests have legitimate IP addresses 
and are sent through valid TCP 
connections, they become difficult to 
detect with existing defense mechanism 
such as Intrusion Detection System 
(IDS), filtering or blacklisting techniques.
 HTTP GET Flood attack is the 
most common DDOS attack on the 
application layer of a network 
(Mirvaziri, 2017). During the attack, a 
bot sends multiples of GET requests to 
the server and awaits responses like a 
legitimate user. Consequently, the 
request queue increases spontaneously 
and the server becomes obliged to 
allocate the maximum resources 
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possible in response to every GET 
request (Jaafar et al., 2019). The 
computational resources of the web 
server gets exhausted as the server 
processes and responds to malicious 
requests, thereby denying subsequent 
incoming requests from legitimate 
users. Detecting HTTP GET flood 
attacks is particularly challenging as 
malicious request packets often 
appear similarly to normal request 
packets (Najafabadi et al., 2017).  In an 
attempt to evade detection, a stealthy 
attacker launches sophisticated 
attacks that closely mimic the 
behaviors of genuine GET requests. 

Our Contribution 
The rising sophistication of HTTP 
GET flood attacks necessitates 
continuous research efforts towards 
preserving the availability of web 
services. In this work, we develop an 
efficient behavioral-based detection 
system namely DDoSDetect for the 
mitigation of HTTP GET flood 
attacks. The system is based on four 
carefully selected behavioral features 
that can distinctly differentiate genuine 
GET requests from the illegitimate 
requests. More precisely, the system is 
an intelligent one targeted at 
sophisticated attacks. Moreover, the 
system is real-time and ensures an 
overall availability of web servers.       

The rest of the paper is organized as 
follows. Section 2 discusses the 
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existing works on the detection of 
HTTP GET flood attacks. Section 3 
describes the methodology of the 
proposed system 'DDoSDetect', giving 
details on its feature selection, 
architecture and algorithms. In Section 
4, the obtainable experimental results 
are presented and evaluated. Finally, in 
Section 5, we conclude the work. 

2. Literature Review
 Several efforts in literatures have 
focused on the detection of HTTP GET 
flood attacks. Some studies focused on 
puzzle-based methods (Ko et al., 2010), 
load balancing mechanism (Spagna et 
al., 2013), hardware mechanism (Jin et 
al., 2010), access control lists and 
hidden cache of the browser (Ak et al., 
2012) and IP Hopping (Choi et al., 
2010). But none of these approaches 
proffer effective solutions for 
Application-layer DDoS attacks 
detection.

Some efforts have been geared towards 
analyzing user's biometric behavior for 
the detection of malicious traffic. Such 
approaches involve leveraging on 
features based on user's interactions 
with the system for their authentication. 
The use of keystrokes, mouse dynamics 
and interaction with a graphical user 
interface (GUI) (Stevanovic and Vlajic, 
2014; Jin et al., 2010; Abramson and 
Aha, 2013; Shen et al., 2013; Bravo 
and Mauricio, 2018) have been 
considered. Nevertheless, real users 
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and robots cannot be differentiated 
while using these approaches.
 Detecting GET flood attacks by 
monitoring anomalies in user's 
browsing behaviors have been greatly 
explored. Characteristics such as speed 
of browsing pages (Yatagai et al., 2007), 
number of users and requests (Ranjan et 
al., 2008), entropy of request type 
(Huang et al., 2014), request count 
(Singh et al., 2017), click number of web 
objects (Zhou et al., 2014; Wang et al., 
2014), IP address (Campo et al., 2013), 
number of bytes sent in 1 second 
(Zolotukhin et al., 2016) users browsing 
process (Dick and Scheffer, 2016), web 
page requested (Saravanan et al., 2016), 
attack rate (Thapngam et al., 2011) etc., 
have been employed to detect 
variations from normal behaviors. 
Many of these models have germane 
weaknesses as their choices of features 
are not sufficient to counter 
sophisticated attacks.
 In (Xie and Yu, 2009), the authors 
proposed modeling the sequence 
order of legitimate page requests and 
characterizing legit imate and 
suspicious browsing behaviors based 
on Hidden semi Markov Model 
(HsMM). Liao et al. (2015) adopted 
Support Vector Machine (SVM) to 
analyze user's browsing behaviors 
based on access frequencies, especially 
request time interval and frequency of 
requests. Miu et al. (2016) proposed 
monitoring the sequence of user's web 
page access to identify anomalous 

users. Singh et al. (2018) also proposed 
user-behavioral analytics for detection 
of HTTP GET flood attacks. These 
approaches while detecting attacks 
could not attain efficiency as they are 
not updated in real time and cannot 
handle sophisticated attacks.
 These existing researches indicate 
that the variations of behavioral patterns 
between legitimate users and attackers 
have great potentials to distinguish 
human users from attack bots. Hence, 
this paper presents an improved 
behavioral-based system for the 
detection of HTTP GET flood attacks.

3. Methodology
 There is an inherent need to 
improve detection solutions for HTTP 
GET flood attacks through intelligent 
and real-time mechanisms. The 
detection of these attacks requires a high-
level monitoring of all GET requests sent 
to the server. The proposed system 
named 'DDoSDetect' is built on a 
behavioral analysis of incoming HTTP 
GET requests. 

Four features are employed to analyze 
the behaviors of all GET requests sent 
to the server. 
These features are carefully selected and 
targeted at distinguishing legitimate 
users from sophisticated bots. They are:
Ÿ Rate of GET requests: this is the 

number of GET requests sent to 
the server in a specific time 
interval, measured in requests per 
second. This feature is adopted by 
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considering that the request rate 
of bots will be higher than those 
of legitimate users.

Ÿ Time interval between successive 
GET requests: this is the time 
difference between two successive 
GET requests sent from a particular 
IP address, measured in seconds.

Ÿ Session rate: this is the number of 
sessions initiated by a particular 
IP address during a specific 
period of time, measured in 
sessions per seconds.

Ÿ Frequency of requests: this is the 
number of requests made on a 
particular web page in one session. 

Normal traffic from a dataset was 
investigated to obtain typical 
browsing behaviors of users over a 
period of time. This observation runs 
on a time frame of 180 minutes. The 
behaviors of the legitimate GET 
requests are used as standards to flag 
anomalies in the proposed system. 
Such legitimate behaviors observed 
within each time frame are analyzed, 
and the following characteristics are 
deduced.

=  maximum rate of GET requests 
from a legitimate user

= minimum time interval between 
successive legitimate requests

= maximum session rate of a 
legitimate user

= maximum number of legitimate 
requests on a web page in a session

A function F is derived from the 
characteristics obtained from legitimate 
GET requests to compute two 
classification zones, namely Safe and 
Danger zones. The Safe zone       refers 
to a class in which the resources of a 
server are safe from being overwhelmed. 
The Danger zone       refers to a class in 
which the resources of a server are at a 
great risk of being overwhelmed, 
resulting to a DDoS attack. 
The function F is computed as 
represented in
 (1).

For each connected user, Index I using 
(2) is calculated from the behavioral 
features of the incoming GET 
requests.

where R  = rate of requests, N =i i  

frequency of requests, S  =session rate i

and  T  = time interval.i

Safe zone: A computed Index I is in a Safe 

zone Sz if:

Danger zone: A computed Index I is in a 
Danger zone Dz  if:         
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The Detection System
The detection system 'DDoSDetect' 
essentially is comprised of two 
components namely: Traffic Monitor 
and Detection Unit as shown in 
Figure. 1. The traffic monitor is an 
interface showing the details of each 
HTTP GET request sent to the web 
server. The traffic monitor tracks the 
flow of all requests to the web server. 
Through the monitor, the behavioral 
features of incoming GET requests are 
captured for analysis. The detection 
u n i t  i s  re s p o n s i b l e  f o r  t h e  
classification of GET requests as either 
legitimate or illegitimate requests.

The Detection unit of DDoSDetect is 
divided into three phases. These are:
l The Legitimate Request Phase (LRP): 

This phase is designed to verify if the 
incoming GET requests fall within the 
Safe zone. The verification is done 
through the computed Index   of the 
user's behavioral features. Requests 
that are classified as being legitimate 
are forwarded to the web server. 
Otherwise, the requests are passed 
on to the Illegitimate Request Phase.

l Illegitimate Request Phase (IRP): 
This phase is designed to verify if the 
incoming GET requests fall within 
the Danger zone. The verification, 
which is achieved through the 
computed Index of the user's 
behavioral features, determines if the 
GET requests are illegitimate 
requests. Such requests are blocked, 

thus preventing the web server from 
committing resources to its 
processing.

l Support Vector Machine-Request 
Classifier (SVM-RC): Some 
attacks are highly sophisticated and 
carefully designed by rational 
attackers such as to evade detection. 
In DDoSDetect, considerations have 
been made for such attacks as they 
may not fall within the classified Safe 
and Danger zones. Consequently, an 
intelligent phase called the Support 
Vector Machine-Request Classifier 
(SVM-RC) is designed to detect such 
malicious requests. When the 
Legitimate Request Phase (LRP) and 
Illegitimate Request Phase (ILP) cannot 
classify a request, the trained Support 
Vector Machine (SVM) classifier is 
applied to identify the attacks.

The method, as shown in Algorithm 1 
is based on the Support Vector 
Machine (SVM), a machine learning 
classifier. A SVM algorithm builds a 
robust classification model. Support 
Vector Machines operates on the 
principle of creating a hyperplane that 
separates dataset into classes. The 
extreme vectors that help in creating 
the hyperplane are chosen. The 
dimension of the hyperplane is 
dependent on the features present in 
the data set. As there are four 
proposed features, the hyperplane will 
be a 3-dimension plane. 
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Fig. 1:  Architecture of the Proposed 'DDoSDetect'

4. IMPLEMENTATION AND 
EVALUATION OF RESULTS

The system implementation of 
'DDoSDetect' was done in JetBrains 
PyCharm Integrated Development 
Environment (IDE) using PCs with 
64-bit Windows Operating System, 

Intel core i3, 1 Terabyte Hard disk 
drive, 4GB RAM and 2.00GHz CPU. 
Low Orbit Ion Cannon (LOIC), a 
software tool was employed to launch a 
DDoS attack on the web server.
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Fig. 2: Output from DDoSDetect showing a malicious GET request

Figure 2 shows the reaction of 
DDoSDetect on detecting a malicious 
HTTP GET request. The performance 
of DDoSDetect is evaluated using 
metrics such as: Accuracy, Precision, 
Recall and F-measure.
i) Accuracy: is the most intuitive 

performance measure. It reflects 
the overall effectiveness of a 
classifier.

Accuracy 

ii) Precision: is the ratio of correctly 
predicted observations to the total 
predicted positive observations.

Precision = 

iii) Recall: is the ratio of correctly 
predicted positive observations to 
the total observations in actual class.

Recall = 

iv) F-measure: is the weighted mean of 
the precision and recall of the 
classifier. 

F-measure = 

where,
True Positive (TP) denotes the number 
of malicious GET requests correctly 
classified.
False Negative (FN) denotes the 
number of malicious GET requests 
erroneously classified as benign 
requests.
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Fig. 3: Performance Comparison of 
SVM-RC in DDoSDetect with One 
Rule and Random Forest classifiers

False Positive (FP) denotes the number 
of benign GET requests erroneously 
classified as malicious requests.
True Negative (TN) denotes the 
number of benign GET requests 
correctly classified.

Performance Comparison of  
DDoSDetect with Traditional Models 
To compare the effectiveness of 
DDoSDetect with traditional models, 
several experiments were performed 
using different classifiers in a 
JetBrains PyCharm Integrated 
Development Environment (IDE). 
The Support Vector Machine-Request 
Classifier (SVM-RC) in DDoSDetect, 

OneRule and Random Forest 
algorithms were used separately on 
the test dataset based on the four 
selected features to investigate the 
performance of the models. The 
results of the experiments as shown in 
Figure 3 show that the Support Vector 
Machine-Request Classifier (SVM-RC) 
has the best accuracy of 97.2% in 
comparison with other classifiers as 
OneRule and Random Forest 
algorithms with an accuracy of 91.6% 
and 94.4% respectively.

4.   CONCLUSION
Web servers that run on Hypertext 
Transfer Protocol (HTTP) are 
vulnerable to Distributed Denial of 
Service (DDoS) attacks. HTTP GET 
Flood attack is the most common DDoS 
attack on the application layer of a 
network. Application layer attacks 
target the exhaustion of resources of a 
web server such as CPU cycles, database 
cycles, memory or socket connections. 
These attacks cause unavailability of 
services as attackers utilize botnets to 
send huge numbers of malicious GET 
requests to overwhelm the web server. 
The resulting effects include service 
interruptions, reduced quality of 
service, reputational damages, huge 
financial losses, breach of contracts 
and loss of users' trust. In this work, a 
behavioral based detection system was 
presented for HTTP GET flood attacks. 
The system named 'DDoSDetect' is based 
on four behavioral features. DDoSDetect 
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leverages on the observed behaviors of 
legitimate GET requests to detect 
anomalies in the behaviors of attacking 
bots to distinguish legitimate requests 
from malicious requests. Incoming GET 
requests are classified by DDoSDetect such 
that malicious requests are dropped and 
the legitimate requests are forwarded 
to the web server. Experimental results 
show that the detection accuracy of 
DDoSDetect outperforms other classifiers, 
and thus effective at mitigating HTTP GET 
flood attacks.
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